RANSAC-Based Training Data Selection for Speaker State Recognition

نویسندگان

  • Elif Bozkurt
  • Engin Erzin
  • Çigdem Eroglu Erdem
  • A. Tanju Erdem
چکیده

We present a Random Sampling Consensus (RANSAC) based training approach for the problem of speaker state recognition from spontaneous speech. Our system is trained and tested with the INTERSPEECH 2011 Speaker State Challenge corpora that includes the Intoxication and the Sleepiness Subchallenges, where each sub-challenge defines a two-class classification task. We aim to perform a RANSAC-based training data selection coupled with the Support Vector Machine (SVM) based classification to prune possible outliers, which exist in the training data. Our experimental evaluations indicate that utilization of RANSAC-based training data selection provides 66.32 % and 65.38 % unweighted average (UA) recall rate on the development and test sets for the Sleepiness Sub-challenge, respectively and a slight improvement on the Intoxication Subchallenge performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Maximum Entropy Based Data Selection for Speaker Recognition

This paper presents the data selection method for speaker recognition. Since there is no promise that more data guarantee better results, the way of data selection becomes important. In the GMM-UBM speaker recognition, the UBM is trained to represent the speaker-independent distribution of acoustic features while the GMM speaker model is tailored for a specific speaker. In this study of data se...

متن کامل

i-Vector Selection for Effective PLDA Modeling in Speaker Recognition

Data selection is an important issue in speaker recognition. In previous studies, the data selection for universal background model (UBM) training and for the background dataset of support vector machines (SVM) have been addressed. In this paper, we address the data selection for a probabilistic linear discriminant analysis (PLDA) model which is one of the state-of-the-art methods for i-vector ...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011